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Classes 1-2 

Chapter 9: Canonical Correlation Analysis (CCA).  

 

Canonical Correlation Analysis (CCA) will be presented as a very general 

technique for interrelating two (or more, in some generalizations, see Class 9 description)      

matrices of variables defined on the same objects by finding linear combinations of each 

having maximum correlation.  These separate linear combinations maximizing the 

correlation are called “canonical variates.”  Statistical theory of CCA and applications 

will be emphasized.  A measure called “Wilks’s Λ ” will be discussed as a statistic for 

testing the statistical significance of the relationship between the two sets of variables.  

Also, Stewart and Love’s “redundancy” index will be discussed as a measure of the 

overall amount of variance accounted for by one variable set in the other. 

 



 

Class 3 

Chapter 12 Multiple Discriminant Analysis. 

 

Multiple Discriminant Analysis (MDA) is used when it’s desired to find linear 

combinations of a set of variables that best discriminate among two or more groups of 

objects, people or other entities.  It will be shown that two group discriminant analysis 

can be formulated as a special case of multiple linear regression analysis (with a 

“dummy” dependent variable comprising a binary encoding of membership in the two 

groups.)  Analogously, MDA with three or more groups can be formulated as a special 

case of CCA (with n-1 “dummy” variables redundantly encoding the n distinct groups in 

this case), as will be demonstrated. 

 

 

Class 4 

Chapter 6  Confirmatory Factor Analysis. 

 

In Confirmatory Factor Analysis (CFA), as contrasted with Exploratory Factor 

Analysis (EFA), specific hypotheses are formulated regarding the structure of the factor 

solution.  These hypotheses are explicitly tested in a confirmatory manner.  This is 

usually done in the context of maximum likelihood fitting of the factor models, although 

other criteria of fit can be used.  As in other cases of hypothesis testing, the best model fit 

with constraints implied by the stated hypothesis is compared with a full, unconstrained, 

model, and chi square measures of the difference in fit of the two models are used to 

decide whether the null hypothesis (corresponding to the hypothesized model to be 

confirmed or disconfirmed) can be rejected in favor of the alternative hypothesis 

(corresponding to the full unconstrained, model.)  If the null hypothesis cannot be 

rejected this is taken as evidence tending to confirm the hypothesized model. 

 

 

Classes 5-6 



Chapter 10  Structural Equation Models with Latent Variables. 

 

This chapter deals with a general approach to analysis of dependence allowing the 

user to account for measurement errors in observed variables while studying the 

dependence relationships among the latent variables.  Structural equation models with 

latent variables can be shown to be more general than models based on canonical 

correlation, which can be shown to be a special case. 

 

NOTE:  Midterm take home exam will be distributed in this class.  Exam should 

be returned by beginning of Class 9. 

 

 

Classes 7-8 

Chapter 13  Logit Choice Models. 

 

  A logistic, or logit, choice model assumes the probabilities of binary (or n-ary) 

choices by an individual are logistically distributed. In the binary case the logistic distribution 

has the form: 
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where 1v  and 2v  represent the value or utility of alternatives 1 and 2 respectively.  

In the n-ary case (in which a choice is to be made among n alternatives rather than only 

two as in the binary case) the distribution has a similar form for each of the n alternative 

choices, except that the denominators comprise the sum of the terms 



( ) n2,1,ifor =ive .  The utilities, iv  are generally assumed to be linear combinations of 

a set of measured variables of which these utilities are assumed to be functions. 

Another distribution often assumed for these choice probabilities is the probit, in 

which case the choice probabilities for the binary case are defined as the normal CDF 

(Cumulative Distribution Function) applied to the differences in the two utilities.  (In the 

n-ary case the probit is defined as the distribution comprising the normal CDF applied to 

the difference between the utility for alternative i and the sum of utilities for the 

remaining n – 1 alternatives.)  While the probit has many desirable properties, it does not 

yield a closed functional form for the choice probabilities whereas the logistic does.  In 

part for this reason (as well as based on an elegant theoretical justification of the logistic 

derived by R. D Luce in a famous 1959 book) the logistic (which in practice is virtually 

indistinguishable from the probit anyway) is usually preferred. 

 

The logistic (or logit) distribution has one property, however, that can sometimes 

be troublesome.  This is the property of “Independence of Irrelevant Alternatives”  (IIA).  

IIA states that adding an additional “irrelevant” alternative to a set of n alternatives 

currently available leaves the ratios of the choice probabilities of pairs of those initial n 

alternatives unchanged.  As can easily be demonstrated, there are certain choice situations 

in which this condition (IIA) is clearly violated.  This apparent anomaly can be corrected, 

however, by generalizing the logistic to the nested logistic model, in which the n 

alternatives are nested within a hierarchical tree structure, as will be described and 

discussed. 

 

 

 

Class 9 

Chapter 13  Generalized Canonical Correlation Analysis. 

 

  There are a number of generalizations of (two set) canonical correlation analyses 

to three or more sets.  A number of these will be discussed and applications of them described.  

A set of papers (Carroll, J. D., 1968; Carroll, J. D. 1973; Horst, P., 1961a, b; Kettenring, J. R., 



1972; McKeon, J. J., 1965 on these topics will be made available to the class dealing with this 

topic. 

 

 

Classes 10-11:  Overlapping clustering, including generalizations to the “three-way” (or 

individual differences) case. 

 

  A number of models and methods for overlapping clustering will be discussed.  

These include: 

 

• The ADCLUS (Additive CLUStering) model (Shepard and Arabie, 

1979) 

• The MAPCLUS (Mathematical Programming CLUStering) 

method for fitting the ADCLUS model (Arabie and Carroll, 1980) 

• The INDCLUS (Individual Differences CLUStering) model and 

method (Carroll and Arabie, 1983), which generalizes the 

ADCLUS/MAPCLUS approach to the three-way or individual 

differences case, in which data are provided for two or more 

subjects or other sources of data, and a joint overlapping clustering 

is sought, with differential weights for these clusters for each 

subject/source, indicating the effect of each overlapping cluster on 

the proximity (similarity or dissimilarity) data of that 

subject/source, very much analogous to the effect of subject/source 

weights in the INDSCAL model for individual differences 

multidimensional scaling. 

• The SINDCLUS (“Speedy” INDCLUS) method (of Chaturvedi 

and Carroll, 1994), which enables fitting both the three-way 

INDCLUS model and the two-way ADCLUS model via an 

algorithm closely analogous to that used in fitting the INDSCAL 



model.  This algorithm is considerably faster and more efficient 

than the earlier INDCLUS method, and so is generally to be 

preferred for fitting the INDCLUS model  

• Overlapping K-centroids clustering (Chaturvedi, Carroll, Green 

and Rotondo, 1997).  This approach generalizes such well-known 

clustering techniques as K-means and K-medians to the 

overlapping case.  It also allows an entire class of overlapping 

clustering models based on different values of p in the Lp metric.  

(Overlapping K-mean corresponds to p = 2 while overlapping K-

medians corresponds to p = 1.)  Two extreme cases of interest 

include a method called “K-midranges clustering” (corresponding 

to p = ∞ ) and K-modes clustering (p = 0). 

 

 

Classes 12- 13:  General three-way and multiway models and methods of data analysis. 

 

  A general three-way and/or N-way (N > 3) model originally devised by Carroll 

and Chang (1970) [as a generalization of the three-way INDSCAL model and method developed 

by these authors in 1970] called CANDECOMP (for CANonical DEComposition of N-way 

tables) will be discussed and a number of applications described.  See Carroll and Pruzansky for 

a general overview of CANDECOMP (Carroll and Pruzansky, 1984) model.  Especially 

important applications include four-way or higher-way generalizations of the INDSCAL model 

and method and an approach to three-way or multiway factor or components analysis, closely 

related to the method independently devised by Harshman and Lundy (1984a,b) and others called 

PARAFAC (for PARallel FACtor analysis. 

 

  A modified version of CANDECOMP, called CANDELINC (CANonical 

Decomposition with LINear Constraints) [Carroll, Pruzansky and Kruskal (1980) ] will also be 

covered, and applications described.  CANDELINC allows fitting the CANDECOMP model 

with specified linear constraints, so that dimensions emerging in a CANDECOMP analysis 



might be constrained, for example, to be linear combinations of a specific set of exogenous 

variables.  (This can greatly enhance interpretability of CANDECOMP dimensions, among other 

advantages.)  Among applications of CANDELINC to be discussed are fitting linearly 

constrained versions of the MDPREF vector model for individual differences analysis of 

preferential choice data, fitting linearly constrained versions of the INDSCAL models, and an 

approach allowing fitting the INDSCAL model to much larger sets of proximity data than might 

otherwise be possible. 

 

  Another development consists of a family of hybrid three-way and multiway 

models (Carroll and Chaturvedi, 1995,  1998) given the generic name CANDCLUS (for 

CANonical Decomposition CLUStering) which will be discussed, including the general model 

and a number of special cases.  CANDCLUS combines the CANDECOMP model and method 

described earlier with a general three- or higher-way overlapping clustering approach (which can 

be viewed as a higher-way generalization of the SINDCLUS approach described earlier.  

 

  Every three- or higher-way model discussed earlier can be viewed as a special 

case of CANDCLUS (e.g., CANDECOMP, INDSCAL, SINDCLUS and various special cases of 

these), while a number of other models and methods have been devised which are additional 

special cases of CANDCLUS.  One of the more interesting of these is a model and method called 

CLUSCALE (Chaturvedi and Carroll, submitted for publication, 2004) which comprises a three-

way (or potentially higher-way) hybrid model combining aspects of INDSCAL with aspects of 

SINDCLUS, so it results in a hybrid representation combining continuous dimensional structure 

with discrete cluster structure.  CLUSCALE will be illustrated with an application to some data 

on perceptions of cars. 

 

  Finally, other hybrid models, combining continuous dimensional structure with 

discrete structure will be discussed.  One of these is an approach combining a Euclidean spatial 

model with one or more tree structures, the latter comprising discrete geometric models.  See 

Carroll and Pruzansky (1975). While the approach to be discussed is limited to the two-way case, 

it would be straightforward to extend this to the three- or higher-way case. 

 



 

Class 14  Parametric Mapping (PARAMAP). 

 

Parametric Mapping (abbreviated as “PARAMAP”) was first proposed by Carroll in a 

1966 paper co-authored with R. N. Shepard (“Parametric representation of nonlinear data 

structures”) [Shepard and Carroll, 1966] published in the first of several volumes edited by P. R. 

Krishnaiah simply entitled, “Multivariate Analysis.”  In this paper Shepard proposed a method he 

called “locally monotone analysis of proximities” (a version of nonmetric MDS based entirely on 

“small” distances.)  This approach worked quite well for nonlinear data structures that were not 

too highly curved, but did not work with a highly nonlinear manifold constituting a closed 

surface, such as data points on a complete circle or sphere.  Carroll then proposed Parametric 

Mapping (PARAMAP) in the second part of the paper.  PARAMAP has been shown to be able 

to deal with such closed manifolds as the complete circle, sphere, torus, (defining a “flat” 

manifold whose linear dimensionality equals the intrinsic or topological dimensionality of the 

closed nonlinear manifold on which the data points provided as input to the procedure are 

embedded).  In the case of points on a circle embedded in a two-dimensional Euclidean space 

PARAMAP produces as output a one dimensional linear continuum in which the local structure 

of the points on the circle is very well preserved, with the notable exception of one point on the 

circle where the circle must be cut in order to open it into this one dimensional linear space 

topologically equivalent to the nonlinear manifold (the circle)—everywhere except at that point.  

Analogously, in the case of the sphere, a map very similar to one of the standard maps of the 

earth’s surface worked out by cartographers (specifically, an azimuthal equidistant projection) is 

obtained.  In this case the functions relating data points on the sphere to those on the flat two-

dimensional map obtained by PARAMAP is continuous almost everywhere—the notable 

exception corresponding to the point on the sphere where the sphere must be “punctured” in 

order to map the entire sphere onto the “flat” map whose dimensionality (two) corresponds to 

that of the intrinsic topological dimensionality of the sphere, which is locally flat (or two-

dimensional).  The functions relating this flat two-dimensional map to the points (analogous to 

cities on the earth) on the surface of the sphere will be continuous except for a severe 

discontinuity occurring at the point where the sphere had to be “punctured” in order to produce 

the appropriate reduced dimensional map obtained by PARAMAP.  In maps of the earth’s 



surface the “puncture” usually is positioned in a region (say in the Artic ocean or middle of the 

Atlantic or Pacific) that is uninhabited so that there are no cities or obvious geographic features, 

so that the extreme distortion is not nearly so obvious as if it occurred, say, in the middle of the 

U.S.A., Europe or Asia! 

 

  PARAMAP is based on optimizing a measure (called “Kappa”), developed by 

Carroll, of “continuity” or smoothness of the mapping from one space (or set of variables) to 

another.  The definition of this measure and its justification are described in considerable detail 

in the 1966 paper discussed earlier.  Once the dimensionality of the representation or “map” to 

be determined by PARAMAP is determined by the user, a gradient based optimization technique 

is used to seek the configuration of points on that map optimizing Kappa. 

 

  The PARAMAP procedure developed in 1966 worked well with relatively small 

sets of points that were regularly spaced and errorless (so the points on the sphere were precisely 

located on the sphere, without deviating at all from that surface, or deviating from perfectly 

regular spacing).  Unfortunately, once this regular spacing and errorlessness condition are 

violated, the algorithm tended to break down badly, due to a serious “local minimum” problem. 

 

  Instead of obtaining the global optimum a series of merely local optima were 

obtained—none of which corresponded to (or even approximated) the correct solution 

corresponding to the global optimum. 

 

  Ulas Akkucuk, a Ph.D. student working with Carroll, who recently got his Ph.D. 

conducting a dissertation based on research with Carroll on this “PARAMAP” problem, has 

largely solved this problem.  Akkucuk solved the “PARAMAP” problem in large part by taking 

advantage of the immensely greater speed and power of modern computers as compared with 

those of the late 1960’s.  Akkucuk has improved the algorithm in a number of important ways, 

but, most significantly, this greater speed and power enables running the optimization algorithm 

from vastly more different starting points, thus obtaining a very large number of different locally 

optimal solutions.  The best of these local optima can be plausibly assumed to be, or at least to be 

very close to, the desired global optimum.  After obtaining this estimate of the global optimum, 



Akkucuk ran a large number of additional iterations of the gradient-based optimization 

(minimization) algorithm, using that current estimate of the globally optimal solution as a 

starting point, so as to push it to  as complete convergence as possible.  This combined numerical 

strategy seems to work quite well. 

 

  Akkucuk also devised a very powerful measure of “preservation of local 

structure” that measures the extent the local structure in the original data is preserved in the 

lower dimensional PARAMAP (or ISOMAP) representations.  

 

  Akkucuk also worked out procedures for transforming the obtained solutions 

resulting from this fitting procedure to a form that best matches the “true” configuration (known, 

since these studies were all “Monte Carlo” studies in which the “true” solution was given).  

These matching procedures involved linear transformations (rotation, translation and uniform 

dilation) as well as nonlinear ones based on the nature of the data structures involved.  For 

example, in the case of the points on a sphere, since the sphere can be punctured at any point to 

“open” it up into a flat two-dimensional plane, a certain class of nonlinear transformations are 

applied that depend on the exact point at which this “puncture” in fact occurred. 

 

  A measure of agreement between the true and obtained configuration is thereby 

obtained.  These measures were exceedingly good—even for solutions that had been seriously 

perturbed by the violation of the regular spacing condition and by addition of significant amounts 

of random error.  This was confirmed statistically by use of a randomization procedure. 

 

  This dissertation work by Akkucuk (done under the general supervision of 

Carroll, who served as his dissertation advisor) involved two types of nonlinear manifolds.  One 

was the sphere already discussed extensively, while the other was a very regular torus embedded 

in four dimensions.  This four dimensional torus, or donut-like manifold, had the interesting 

regularity property that the diameter of the hole of the donut, that of the donut itself, and that of a 

cross-section of the donut taken by cutting it at any point and opening it out into a tube (or 

approximate cylinder) are all equal.  This, of course, is physically impossible in the case of a 

three-dimensional torus, but is quite easily attained with the kind of four dimensional torus 



Akkucuk and Carroll were dealing with.  PARAMAP enabled remarkably good recoveries of 

both these types of configurations, even with considerable perturbations of the type discussed 

earlier. 

 

  Akkucuk also compared PARAMAP with a procedure called ISOMAP developed 

by Tenenbaum and colleagues.  ISOMAP approximates geodetic distances among points on a 

manifold via graph theoretic methods, which will not be described further here.  These 

approximate geodetic distances are then analyzed by “classical MDS” methodology, resulting in 

a lower dimensional spatial representation that’s topologically equivalent to the original 

manifold—but with an important caveat.  The caveat is that ISOMAP works only for manifolds 

that are not closed (as the circle, sphere, and torus configurations described above are) and, in 

fact, will break down if the manifold gets “close” to being closed.  For example, it will work on 

points on a segment of a sphere comprising about three-quarters of the sphere (so that roughly 

the top one quarter of the sphere has been cut off, as one might remove the top quarter of, say an 

orange) but if more of the sphere is present the procedure breaks down badly.  In fact, using the 

same measure of agreement described above, ISOMAP generally recovers the “true” 

configuration much less adequately than does PARAMAP. 

 

  One additional very important feature was added by Akkucuk.  Since the earlier 

version of PARAMAP was seriously restricted by the number of data points it could handle, a 

procedure was added allowing analysis of much larger sets of points.  This is accomplished by 

simply using a much larger set of points (say 1,000) but, in a random or systematic way, 

sampling a small set (on the order of 50 or 60) from this larger set, (called “landmark points”)for 

which a PARAMAP solution is obtained.  Then, fixing the smaller set of points, the remaining 

large set of “holdout” points excluded from the original set are mapped in, using a conditional 

version of PARAMAP in which only the excluded points are fit (the smaller set of “landmark” 

points remaining fixed).  There are many details of this not explicated here, but suffice it to say 

that this composite procedure works quite well, and the PARAMAP solutions thus obtained 

conform quite well with the “true” configurations as measured by the index of agreement 

discussed earlier; thus enabling fitting of much larger data sets than would otherwise be possible!  



This appears to be a very promising approach for extending PARAMAP and numerous other 

data analysis and/or nonlinear mapping techniques to much larger data sets. 

 

 

Class 15  Final Exam 

 

 

Grading:  Grades will be based on Midterm Exam (40%), Final Exam (40%) and homework and 

class participation (20%). 
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